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We present a theoretical analysis of a recently introduced interface growth model with a global search
of optimal growth sites, realized by quenched random forces. The interest in this model lies in the fact
that it yields a variety of long-ranged correlated phenomena, which are characterized by scaling ex-
ponents that differ from the Kardar-Parisi-Zhang universality class [Phys. Rev. Lett. 56, 889 (1986)], in
closer correspondence with experimental observations. It is shown that all the phenomenological
findings can be recovered from the theory, and all the exponents found can be computed from the
knowledge of one exponent of the directed percolation problem.

PACS number(s): 05.40.+j, 47.55.Mh

I. INTRODUCTION

Generically, the dynamical advancement of interfaces
in nonlinear physics does not result in flat interfaces [1,2].
Rather, growing interfaces tend to be either unstable and
develop fingers and overhangs [3], or remain self-affine,
but wrinkle on a wide range of scales, with the width of
the interface diverging with the size of the system. The
phenomenon has attracted considerable theoretical atten-
tion; a popular model for the wrinkling of surfaces was
the Kardar-Parisi-Zhang (KPZ) model [4], which is a
normal form for the growth of an interface under the ac-
tion of local randomness. Interestingly enough, many ex-
periments [5,6] indicated that real interfaces do not fall
under the KPZ universality class. The exponents charac-
terizing the width of the interface differed from the pre-
diction of the KPZ model. In addition, some detailed
analysis [7] of the interface growth process indicated that
the assumption about uncorrelated noise, which is funda-
mental to KPZ, is untenable. It became evident that one
needs to understand what is the crucial ingredient that is
missing in the KPZ universality class.

An interesting suggestion was made recently by Snep-
pen [8], who introduced a simple growth model with
quenched randomness. The character of this model was
chosen to represent an invasion process of the type ob-
served in two-fluid flows in porous media [5], or in the
progress of a fluid through a piece of paper [9]. In the
model, the advancement of the interface is achieved by a
search of a global minimum of the quenched noise, rather
than by choosing a random point on the interface. The
interface is kept self-affine by adding rules to keep the lo-
cal slopes to be 1 (and see Sec. II for exact details). Nu-
merical simulations indicted that this model defines a
universality class which differs from KPZ, with different
static (roughness) and dynamic exponents. The phenom-
enology of this model was explored further by Jensen and
Sneppen [10], and led to the introduction of a large
variety of exponents.

Theoretically, it was realized by Buldyrev et al. [9] and
by Tang and Leschorn [11] that the roughness exponent
measured by Sneppen has to do with the directed-
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percolation problem. In this paper we build on this con-
nection a complete theory of the model. It turns out that
the phenomenology discussed in Ref. [10], which seems
quite rich, can be fully understood in terms of a simple
theoretical considerations. In Sec. II we redefine the
model, and elaborate on the connection to directed per-
colation. In Sec. III we introduce the notion of the “as-
sociated process” which we think is basic to the under-
standing of this model, and derive the relations between
various exponents. In Sec. IV we calculate all the ex-
ponents, and in Sec. V offer concluding remarks.

II. THE MODEL AND THE CONNECTION
TO DIRECTED PERCOLATION

In 1+ 1 dimensions, the model is defined with a space
coordinate x, x =1,2, ..., L, and with a “height” coordi-
nate h, which is unbounded. Every lattice point (x,A) is
assigned a quenched uncorrelated random number f(x,4)
in the interval [0,1]. A discrete interface h(x) is grown
from the initial condition & =0. The interface is updated
in two steps: (i) finding the site with the smallest random
number f(x,h(x)) among all the sites in front of the in-
terface. On this site one unit is added to h, ie.,
h(x)—h(x)+1. (ii) After updating, the neighboring
sites y=x=*1 are checked for their local slope
[h(y)—h(y=*1)|. If this slope is greater than unity, the
height h(y) is adjusted by adding one unit. The same test
is now applied to other sites, until |4 (z)—h(z+1)| <1 for
all points z. The last step can result in an avalanche of
adjustments, and is therefore referred to as such.

The properties of this model were studied numerically
[8,10]. The following is a compilation of the results ob-
tained.

(i) The roughness exponent of the interface y was
defined by the scaling of the “width” W,

W=V {([h(x,t)—(h))*)~LX, 2.1)

where ( ) denotes an average over space and members of
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the ensemble generated by different realizations of
f(x,h). Equation (2.1) is meant to hold for times ¢ large
compared to some saturation time T, [and see (ii)]. The
numerical value of y was found to be y =0.63+0.02.

(ii) A variety of temporal exponents was defined. First,
the transient roughening temporal exponent S, was
defined as

|

Wit)~tPms  p<T,, 2.2)

The numerical value of B,.,, 1S Birans=0.9%0. 1.

Next two further exponents were defined in the sa-
turated ensemble. The first, B, was defined through the
properties of the correlation function S (7),

S(N=V{{h(x,t +7)—h(x,t)—[h(x,t +7)—h(x,t)])}?) ~7 =it

where S, was found to be B_,;,=0.691+0.02. The second
exponent, B, is associated with the scaling of the
infinite moment of the height correlation function:

(max,[h(x,t+7)—h(x,t)]—{[h(x,t+7)—h(x,t)]))

00
ﬁcrit

~ret o (2.4)

The numerical value of B}, is Beg; =0.4010.05.

(iii) Three further exponents were defined in terms of
probabilities to choose a particular site x for the next
growth. Suppose first that a site x, was chosen at time
to. The exponent § relates to the probability P(¢—t¢,)
that x is chosen again at time z. It was found that

(2.5)

with §=0.6210.03. The probability that the first return
to x, would be at ¢, Pgg, scales as

P(t—ty)~(t—1y)" %,

PFR(t_to)N(t_to)_y' > (2.6)
with ¢’ found to be ¥'=1.2+0.1. Lastly, a very interest-
ing quantity is the probability that after x, the next
choice will occur at x,, such that |[x,—x,|=1 The prob-
ability for that, P(]), appears to scale as

P()~1"%,

with $=2.2510.05.

(iv) Finally, the probability to find a value f in the next
choice of growth site can be measured. This measure-
ment was not performed in Ref. [10], and therefore we

measured it ourselves with the result that P(f) behaves
like

PHI~(fo=fNT,

with y=1.9+0.1 and f,=0.4615.

The avalanches show no interesting scaling behavior.
In fact, the avalanche distribution is exponential, with
the mean avalanche being of the order of four sites.

Evidently, every proper theory of this model should ra-
tionalize those scaling laws and derive the numerical
values of the exponents. Indeed, the roughening ex-
ponent Y has been understood already by tying the
present model to directed percolation. The connection to
directed percolation is explained with the help of Fig. 1.
Pick a value of f(x,h) which is precisely f,=1—p,,
where p, is the critical density of the directed percolation

2.7

(2.8)

Peri 2.3)

[
problem. Consider now the points (x,h) for which
f(x,h)Z f.. Since f is uniform in the interval [0,1], the
density of these points is p., and therefore they form a
connected cluster (solid line in Fig. 1), which can have
dangling bonds which are, however, directed. (In our
thinking we choose, arbitrarily, the directedness to be
form left to right.) We denote this cluster by Cpp(f.).
Consider next the subset of this cluster, which consists of
all the points that belong to the unique connected path
with minimal values of h(x), which we denote by
Bpp(f,), see Fig. 1. The growing interface has to identi-
fy at some instant of time with a surface which for every
x has a value of 4 which is smaller by one unit compared
to Bpp(f,) (points denoted by circles in Fig. 1). To see
this, notice that any point x, s which is below this surface
has a value of f(x,h) lower than f,., and will be chosen
for growth before any point in Bpp(f,). The only excep-
tion are the dangling bonds, which, however, are going to
be circumvented and covered by avalanches. Thus the in-
terface in Fig. 1 must identify with Bpp(f,) before
proceeding. In the limit L — « we can also state that the
next point to be chosen will be a point for which f=f,
on Bpp(f,), and later this interface will be punctured by
avalanches.

For any value of f<f, we can identify a directed-
percolation cluster Cpp(f) which has a finite density of

[ Sites that the interface has to pass through

—_ Directed percolation cluster  Cgp
- Position of the interface

[r— The lower hull Bdp

FIG. 1. A typical configuration of the growing interface with
respect to the blocking directed-percolation interface Cpp and
its lower hull Bpp. All solid lines pertain to the Cpp. The bold
line is Bpp. The interface has to identify with the path denoted
by the dotted sites before it penetrates through Bpp.
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points p(f), which increases when f is removed from f,.
Considering a situation where the highest value of the
quenched noise in front of the interface is smaller than
some f, we can define a blocking surface Bpp(f). This
surface is defined as the lowest connected path belonging
to Cpp(f). Evidently, the interface has to identify on its
way with paths removed down one unit in 4 for each and
every such cluster Bpp(f). For f not too far from f, we
can use the results for the transverse and parallel correla-
tion lengths for Cpp, i.e.,

£ ~lp—p 77, (2.9a)

&~lp—p 717, (2.9b)
to estimate for Bpp(f) a roughening exponent

§l~§|1‘.097/1.733=§‘(‘).633 ) (2.10)

This is the justification for the measured value of y. We
should stress that in deriving (2.10) we assumed that the
geometric exponents of Bpp(f) and Cpp(f) are the same.
This is a reasonable assumption, but we are aware of no
proof for its validity.

All the other exponents in this problem need some
more thinking. We turn now to the fundamental process
which we call the “associated process,” whose properties
will yield eventually all the desired information.

III. THE “ASSOCIATED PROCESS”
AND ITS SCALING PROPERTIES

A. Definition of the associated process

Suppose that at time t=t, the point x,,h(x,) was
chosen for growth, and that f(x,,h(xy))=f,. Define
the f, associated process, denoted as ?’fo(s), as the series

of steps in which the points x,x,,...,x, were chosen
for growth, if the following conditions are met:

fx))<fo, fx)<fos.oor fIx)<[fo,
flxg)2fo -

We can state a few properties of the associated process-
es.

(i) In the limit L — o there do not exist associated pro-
cesses with f, > f.. The reason for this fact can be found
in the discussion in the last section. The blocking surface
Bpp(f,) is going to be punctured exactly at f, in the lim-
it L—o0.

(ii) The set of points x;,x,, .. .,X,, together with the
points exposed by avalanches, is simply connected and
compact. The reason for this is that the associated pro-
cess is delineated by two blocking surfaces, and there is
no way to jump to a region that is not enclosed by these
lines. The point x, belongs to the lower bounding line,
and has the minimal value of f on that line. Accordingly,
the definition of the associated process guarantees that no
jump outside the bounded region will occur. (iii) A
consequence of (i) and (ii) is that given a value of f, <f,
the union of the associated processes. ?fo(s) is the lattice

(3.1a)
(3.1b)

x,h. In other words, every value of f, defines a network

in which the strings are given by the blocking surfaces
characterized by f, and the holes in the net are the asso-
ciated processes, with points {x;}}_, plus avalanches. It
should be stressed that this network is not the same as the
network obtained by a directed-percolation cluster of
points with a density p>p.. The reason for the difference
is summarized in Fig. 2, and is explained in the figure
caption to Fig. 2.

(iv) Define K, (s) to be the distribution of s values in

the union of f, associated processes. We claim (and

demonstrate below) that this distribution has the scaling
form

Kfo(s)———s‘fg(s/Af“V) ) (3.2)

where Af=f.—f,, and 7 and v are scaling exponents.
Since (3.2) is used repeatedly below, we shall pause now
to show that the exponents 7 and v are not independent
exponents, but are actually derivable from the knowledge
of the roughness exponent Y.

B. Calculation of 7 and v in terms of the roughness exponent

To calculate 7, we use the fact that every hole in the f
network is characterized by a height r, and a width r.
Evidently, the number of steps s in the associated process
defining the hole is of the order

Region left uncovered after activation

[ J Point of activation

FIG. 2. A diagrammatic explanation of the difference be-
tween the network of directed percolation and the present inter-
face growth model. The diagrams show typical two holes in a
directed-percolation network. In our process the presence of
one or two holes in the network is determined by the position of
the initial site of the associated process. Starting as in the upper
diagram the process will eliminate the middle path by
avalanches, and the associated process will cover both holes. In
the lower diagram the middle path acts as a blocking surface
and both holes will host different associated processes. This
dependence on the dynamical history is one important reason
for the different scaling exponents.
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s~riry, (3.3)

as long as the avalanches have a mean size which is in-
dependent of s [12]. Since every hole is trapped between
two paths belonging to Bpp(f,), we expect that

(3.4a)
s~r X, (3.4b)

~pX
r, r” ,

To proceed, introduce now the distributions of », and s
denoted as K fo(r ;) and K fo(r" ), respectively. We can

write for K fo(r"), in correspondence with (3.2), in the
scaling form

— r
K, (r)=r g l ! (3.5)

Af =

On the one hand, we can deduce the value of ' from the
geometry of the network. Every hole in the network is
bordered by two paths whose roughening exponent is Y.
Thus the distribution of r| should be like the distribution
of intervals between the intersection of the graph with a
given horizontal axis. Since the dimension of a graph
with roughening (Hurst) exponent y is 2—y, the dimen-
sion of the intersection points is 1—Y. Therefore the
number of intersecting points in an interval of length R
scales as R' ™%, and the mean interval size (r,) scales as
RX. Using Eq. (3.5) we see that

R

RX~ fr” —7rdry - (3.6a)
This determines T, as

T=2—X - (3.6b)

We tested this prediction in numerical simulations and
found 7;=1.37%0.05, in agreement with the value of .

On the other hand, we can invoke the connection be-
tween K fo( r )and k fo(s), which is given by

1+y
K, (r)=K, (B =s—g|[L_|x. @7
0 0 dr" Af—v
Using (3.4b) in (3.7) yields
ritx
K, (r )=r—ﬁ1+x)+x
LT g Af"
— —Hl+ )+ X ol (3.8)
Ty g Af—v/(1+x) :

Comparing (3.8) and (3.5) we deduce that 7y=7(1+y)—x
and vj=v/(1+x). Using (3.6b) we find finally

2
=7 vl (3.9
In simulations we got 7=1.231+0.03, in good agreement
with (3.9).

To calculate the exponent v of (3.2) we need to estimate
the changes in the network which are caused by changing
the value of Af. Using Eq. (3.2) to calculate the mean of
s, we find

() ~Af 7277, (3.10)

The number of holes in the f, network, denoted n o is of
the order of the number of lattice points over (s ) fo!

ng ~AfT0 3.11)
When we change f, by a differential df (.e.,
fo—fotdf), there is a differential change dn fo in the

number of holes, since some boundaries in the fishnet
disappear, and some holes merge to create bigger holes.
The probability to eliminate a site on the fishnet is pro-
portional to the total length of the net, which we denote
by L for Denote also the typical numbers of holes which

disappear when one boundary is broken by N. Since we
assume that the fishnet remains geometrically similar at
different values of f, (only with different size holes) we
can assert that N is independent of f,. Accordingly we
write

dnfo N

7 =Lf0N (3.12)
On the other hand, L 7, can be easily estimated as

Lf0~nfo[(rl)+(r”)]~nfo(r”) , (3.13)

where the last step stems from the fact that the holes are
elongated (i.e., x <1). Of course, (r") can be computed
from (3.5),

(r)~Af

Combining (3.11)-(3.14) we get the scaling relation
vX—1=vx—wvyx, or vy=1/x. Since v=v/(1+)) we
can state finally that

v=(1+x)/x .

Equations (3.2), (3.9), and (3.15) complete the
identification of the scaling properties of the associated
processes. We stress that the values of 7 and v are
different from the corresponding exponents of the
directed-percolation problem. The reasons are those dis-
cussed in Fig. 2 and the statement of similarity of the net-
work at different values of f,. We turn now to using
these results to derive the phenomenology of the model.

—v||(2—‘r”)

=Af ", (3.14)

(3.15)

IV. DERIVATION OF THE SCALING EXPONENTS

A. Steady-state exponents

We begin with the probability distribution (2.8) to find
a value of f of the quenched noise in the next growth site.
From the definition of the associated process P, (s) we
know that, given that at time ¢, we hit a value larger than
f (i.e., between f and f,), then next we can either hit a
site with a yet larger value of the noise, or start an associ-
ated process. In the second case we know that for s con-
secutive steps we shall see only values of the noise smaller
than f. If f is very close to f, the first possibility carries
a very small weight. Therefore for the sake of our argu-
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ment we can say that the probability to see any f* in the
interval f, — f depends inversely on (s ) I

Prob{f < f*<f.}~(s);'
~(fe= VT~ (f =,

where (3.9) and (3.15) have been used. Next, since the
events of hitting in the interval (f, f.) are statistically un-
correlated, the probability to start a #, process by exact-
Iy hitting f is (f,—f)~!. Combining this with (4.1) we
conclude that

(4.1)

P(f)~(f.—f), (4.2)
or, in other words, the exponent y of Eq. (2.8) is simply
y=2. (4.3)

This result agrees well with our numerical simulations.

Consider next the dynamical exponents summarized in
Sec. II. The growth process is composed of a succession
of associated processes which are local and compact, with
infrequent big jumps too far away associated processes.
In a typical local process a hole of size r,r| gets covered
in some time interval of time At =t —1¢,:

riry~At . (4.4)
Since we remember that r, ~r{, we conclude that

ry~ AU (4.52)

r~AX/ 10 (4.5b)

First we notice that (4.5b) describes the rate of growth of
the maximal perpendicular length, and therefore the ex-
ponent should be the same as 5, of Eq. (2.4):

;:n=1fr—x=o.388. o
in excellent agreement with the numerical finding.
The probability that the same point x that was chosen
at time ¢, is chosen again at time t,+ At is simply pro-
portional to r, /At, and therefore P(t—ty) of Eq. (2.5)
reads

(4.6)

P(t—ty)~AX/ 1071 4.7)
Thus the exponent 0 satisfies
1
6=——=0.612... 4.8
1+y 4.8)

again in agreement with the findings.

To calculate B, of Eq. (2.3) we need to be a bit more
delicate, since we need to average over an ensemble of
different contributions arising from different associated
processes. The easiest way to think about this average is
to say that |h(x,t+7)—h(x,t)l~r ~At¥" 10 and
when we average over x we need to weigh each such con-
tribution by its “length” r”~Atl/“+X). Thus S(L,7) of
Eq. (2.3) is expected to scale as \/rlzr”, or

S(L,7)~7172020%0 4.9)

Consequently
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Bo=—T2X 0 604. ..

21+ (4.10)

in agreement with the numerical result.

Finally, we want to estimate the exponent ¢ of Eq.
(2.7). We shall only derive here an upper bound on ¢ and
will see that it is close enough to the numerical result. To
do this, think about the interface growth process as a suc-
cession of associated processes, each one characterized by
a value of Af. As long as the associated process contin-
ues, the jumps / between successive chosen sites are rela-
tively small. Once the associated process is finished, we
jump a distance which is at least of the order of r, of the
associated process. Thus, for a given Af the jump distri-
bution can be estimated as (3.5) where we remember that
the actual jumps can be larger than r. The distribution
P(1) will be estimated from an average over all values of
Af,ie.,

1- [4
P~ [ P =f.~ AR (DdAS

1-p, - i
= Afrl g |——— |dAf . 411
J, ar 8l ar—y, [0 @
Comparing with (2.7) we conclude that
=7 =v/vj=2+x . 4.12)

Indeed, the numerical estimate is too high, 2.63 instead of
2.25, as we expected. The jumps can be larger than our
estimate in (4.11), leading to a weaker fall-off in P(/).

B. Transient exponents

One of the interesting observations of Ref. [10] was
that the transient dynamical exponent was different from
its steady-state value. This is in sharp difference with
models of the KPZ class, but seems to be a common
feature of models with quenched noise. To calculate
Birans We first establish a physical picture of the initial or-
ganization of the interface.

Starting from a flat interface, we begin to advance the
interface in a succession of local compact processes,
which have a typical scale that grows with time. Denote
the maximal length scale in the system, which is the
length of the maximal compact domain constructed until
time ¢ by &,. As long as £, is much smaller than the size
of the system L, the domain size distribution is going to
be the same as in Eq. (3.5), but with a time-dependent
cutoff:

M
&
After some short maturation time, the total length of the
domains is of O(L). The average domain length is com-
puted from (4.13), and it reads (r” ), ~ &X. The number of
domains grown until time ¢ is therefore L /£f and we

denote it by N,. Obviously, the total number of affected
sites at time ¢ is proportional to t. Accordingly,

-1
Il

g . (4.13)

K (r)=r,

§x+l
t~N, fl ss ds , 4.14)
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where the upper bound is the size of the maximal
domain. From this we get that £, satisfies the relation

£ ~t1/2 4.15)

The maximal width W, should be of the order of £ %, and
therefore

ﬁtrans=1 (4.16)

in agreement with the numerics.

We should notice that the exponent characterizing £,,
cf. Eq. (4.15), is an interesting prediction that can be mea-
sured. An additional prediction, which is even more in-
teresting, relates to the approach to criticality in the or-
ganization process of the interface. We shall assert that
the growth of £, is a sign of the tendency to choose f
values that approach f, more and more. In time, the
maximal observed f should approach f. as a power law
in time, Af,~t% Using the previous relation between
the typical size r| and Af we can estimate

E~Af, 4.17)

or

—l/vlI=

Af,~t tx. (4.18)

This prediction has not been tested yet.

V. CONCLUSIONS

The main lesson to be learned is that the growth pro-
cess described above is fundamentally different from the
KPZ class. The latter is initiated by a random force
which can hit at arbitrary points on the lattice. In the
present model the growth is a successive series of local-
ized compact invasions interrupted by rare jumps be-
tween them [13]. For this reason the concept of the asso-
ciated process is so fundamental to the understanding of
the scaling properties of this model. This is also the
reason for the difference between the transient and the sa-
turated dynamical exponents.

Although formally the observation that B, differs
from B3, might qualify as “multiscaling” we stress that
they are both derivable from the knowledge of one in-
dependent exponent, . In fact, one could introduce ex-
ponents B, for g-order structure functions, and observe a
q dependence. This is a rather trivial case of multiscaling
since the exponents do not require independent informa-
tion for their evaluation.

It appears that the wealth of predictions available now
for the scaling properties of this model suffices to test the
applicability of this model to experimental situations that
fall outside the KPZ universality class.
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FIG. 2. A diagrammatic explanation of the difference be-
tween the network of directed percolation and the present inter-
face growth model. The diagrams show typical two holes in a
directed-percolation network. In our process the presence of
one or two holes in the network is determined by the position of
the initial site of the associated process. Starting as in the upper
diagram the process will eliminate the middle path by
avalanches, and the associated process will cover both holes. In
the lower diagram the middle path acts as a blocking surface
and both holes will host different associated processes. This
dependence on the dynamical history is one important reason
for the different scaling exponents.



